Skip to main content Link Menu Expand (external link) Document Search Copy Copied

dymaptic.GeoBlazor.Core

dymaptic.GeoBlazor.Core.Model

GeometryEngine Class

A client-side geometry engine for testing, measuring, and analyzing the spatial relationship between two or more 2D
geometries. If more than one geometry is required for any of the methods below, all geometries must have the same
spatial reference for the methods to work as expected.

ArcGIS
  
JS API

</a>

public class GeometryEngine : dymaptic.GeoBlazor.Core.Model.LogicComponent

Inheritance System.Object 🡒 LogicComponent 🡒 GeometryEngine

Constructors

GeometryEngine(IJSRuntime, IConfiguration) Constructor

Default Constructor

public GeometryEngine(Microsoft.JSInterop.IJSRuntime jsRuntime, Microsoft.Extensions.Configuration.IConfiguration configuration);

Parameters

jsRuntime Microsoft.JSInterop.IJSRuntime

Injected JavaScript Runtime reference

configuration Microsoft.Extensions.Configuration.IConfiguration

Injected configuration object

Methods

GeometryEngine.AreEqual(Geometry, Geometry) Method

Indicates if two geometries are equal.

public System.Threading.Tasks.Task<bool> AreEqual(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

First input geometry.

geometry2 Geometry

Second input geometry.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if the two input geometries are equal.

Remarks

In ArcGIS for JS, this method is called Equals. However, this term has special meaning in .NET, so we have
renamed here.

GeometryEngine.Buffer(Geometry, double, Nullable) Method

Creates planar (or Euclidean) buffer polygons at a specified distance around the input geometries.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Polygon> Buffer(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double distance, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> unit=null);

Parameters

geometry Geometry

The buffer input geometries.

distance System.Double

The specified distance(s) for buffering.

unit System.Nullable<LinearUnit>

Measurement unit of the distance(s). Defaults to the units of the input geometries.

Returns

System.Threading.Tasks.Task<Polygon>
The resulting buffer.

Remarks

The GeometryEngine has two methods for buffering geometries client-side: buffer and geodesicBuffer. Use caution
when deciding which method to use. As a general rule, use geodesicBuffer if the input geometries have a spatial
reference of either WGS84 (wkid: 4326) or Web Mercator. Only use buffer (this method) when attempting to buffer
geometries with a projected coordinate system other than Web Mercator. If you need to buffer geometries with a
geographic coordinate system other than WGS84 (wkid: 4326), use geometryService.buffer().

GeometryEngine.Buffer(IEnumerable, IEnumerable, Nullable, Nullable) Method

Creates planar (or Euclidean) buffer polygons at a specified distance around the input geometries.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Polygon[]> Buffer(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries, System.Collections.Generic.IEnumerable<double> distances, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> unit=null, System.Nullable<bool> unionResults=null);

Parameters

geometries System.Collections.Generic.IEnumerable<Geometry>

The buffer input geometries.

distances System.Collections.Generic.IEnumerable<System.Double>

The specified distance(s) for buffering. The length of the geometry array does not have to equal the length of the
distance array. For example, if you pass an array of four geometries: [g1, g2, g3, g4] and an array with one
distance: [d1], all four geometries will be buffered by the single distance value. If instead you use an array of
three distances: [d1, d2, d3], g1 will be buffered by d1, g2 by d2, and g3 and g4 will both be buffered by d3. The
value of the geometry array will be matched one to one with those in the distance array until the final value of
the distance array is reached, in which case that value will be applied to the remaining geometries.

unit System.Nullable<LinearUnit>

Measurement unit of the distance(s). Defaults to the units of the input geometries.

unionResults System.Nullable<System.Boolean>

Determines whether the output geometries should be unioned into a single polygon.

Returns

System.Threading.Tasks.Task<Polygon[]>
The resulting buffers.

Remarks

The GeometryEngine has two methods for buffering geometries client-side: buffer and geodesicBuffer. Use caution
when deciding which method to use. As a general rule, use geodesicBuffer if the input geometries have a spatial
reference of either WGS84 (wkid: 4326) or Web Mercator. Only use buffer (this method) when attempting to buffer
geometries with a projected coordinate system other than Web Mercator. If you need to buffer geometries with a
geographic coordinate system other than WGS84 (wkid: 4326), use geometryService.buffer().

GeometryEngine.Clip(Geometry, Extent) Method

Calculates the clipped geometry from a target geometry by an envelope.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Clip(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Extent extent);

Parameters

geometry Geometry

The geometry to be clipped.

extent Extent

The envelope used to clip.

Returns

System.Threading.Tasks.Task<Geometry>
Clipped geometry.

GeometryEngine.Contains(Geometry, Geometry) Method

Indicates if one geometry contains another geometry.

public System.Threading.Tasks.Task<bool> Contains(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry containerGeometry, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry insideGeometry);

Parameters

containerGeometry Geometry

The geometry that is tested for the “contains” relationship to the other geometry. Think of this geometry as the
potential “container” of the insideGeometry.

insideGeometry Geometry

The geometry that is tested for the “within” relationship to the containerGeometry.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if the containerGeometry contains the insideGeometry.

GeometryEngine.ConvexHull(Geometry) Method

Calculates the convex hull of one or more geometries. A convex hull is the smallest convex polygon that encloses a
group of geometries or vertices. The input can be a single geometry (such as a polyline) or an array of any
geometry type. The hull is typically a polygon but can also be a polyline or a point in degenerate cases.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> ConvexHull(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry);

Parameters

geometry Geometry

The input geometry used to calculate the convex hull.

Returns

System.Threading.Tasks.Task<Geometry>
Returns the convex hull of the input geometries. This is usually a polygon, but can also be a polyline (if the
input is a set of points or polylines forming a straight line), or a point (in degenerate cases).

GeometryEngine.ConvexHull(IEnumerable, Nullable) Method

Calculates the convex hull of one or more geometries. A convex hull is the smallest convex polygon that encloses a
group of geometries or vertices. The input can be a single geometry (such as a polyline) or an array of any
geometry type. The hull is typically a polygon but can also be a polyline or a point in degenerate cases.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[]> ConvexHull(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries, System.Nullable<bool> merge=null);

Parameters

geometries System.Collections.Generic.IEnumerable<Geometry>

The input geometries used to calculate the convex hull. The input array can include various geometry types.

merge System.Nullable<System.Boolean>

Indicates whether to merge the output into a single geometry (usually a polygon).

Returns

System.Threading.Tasks.Task<Geometry[]>
Returns the convex hull of the input geometries. This is usually a polygon, but can also be a polyline (if the
input is a set of points or polylines forming a straight line), or a point (in degenerate cases).

GeometryEngine.Crosses(Geometry, Geometry) Method

Indicates if one geometry crosses another geometry.

public System.Threading.Tasks.Task<bool> Crosses(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

The geometry to cross.

geometry2 Geometry

The geometry being crossed.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if geometry1 crosses geometry2.

GeometryEngine.Cut(Geometry, PolyLine) Method

Splits the input Polyline or Polygon where it crosses a cutting Polyline. For Polylines, all left cuts are grouped
together in the first Geometry. Right cuts and coincident cuts are grouped in the second Geometry and each
undefined cut, along with any uncut parts, are output as separate Polylines. For Polygons, all left cuts are
grouped in the first Polygon, all right cuts are grouped in the second Polygon, and each undefined cut, along with
any leftover parts after cutting, are output as a separate Polygon. If no cuts are returned then the array will be
empty. An undefined cut will only be produced if a left cut or right cut was produced and there was a part left
over after cutting, or a cut is bounded to the left and right of the cutter.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[]> Cut(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.PolyLine cutter);

Parameters

geometry Geometry

The geometry to be cut.

cutter PolyLine

The polyline to cut the geometry.

Returns

System.Threading.Tasks.Task<Geometry[]>
Returns an array of geometries created by cutting the input geometry with the cutter.

GeometryEngine.Densify(Geometry, double, Nullable) Method

Densify geometries by plotting points between existing vertices.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Densify(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double maxSegmentLength, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> maxSegmentLengthUnit=null);

Parameters

geometry Geometry

The geometry to be densified.

maxSegmentLength System.Double

The maximum segment length allowed. Must be a positive value.

maxSegmentLengthUnit System.Nullable<LinearUnit>

Measurement unit for maxSegmentLength. Defaults to the units of the input geometry.

Returns

System.Threading.Tasks.Task<Geometry>
The densified geometry.

GeometryEngine.Difference(Geometry, Geometry) Method

Creates the difference of two geometries. The resultant geometry is the portion of inputGeometry not in the
subtractor. The dimension of the subtractor has to be equal to or greater than that of the inputGeometry.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Difference(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry subtractor);

Parameters

geometry Geometry

The input geometry to subtract from.

subtractor Geometry

The geometry being subtracted from inputGeometry.

Returns

System.Threading.Tasks.Task<Geometry>
Returns the geometry of inputGeometry minus the subtractor geometry.

GeometryEngine.Difference(IEnumerable, Geometry) Method

Creates the difference of two geometries. The resultant geometry is the portion of inputGeometry not in the
subtractor. The dimension of the subtractor has to be equal to or greater than that of the inputGeometry.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[]> Difference(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry subtractor);

Parameters

geometries System.Collections.Generic.IEnumerable<Geometry>

The input geometries to subtract from.

subtractor Geometry

The geometry being subtracted from inputGeometry.

Returns

System.Threading.Tasks.Task<Geometry[]>
Returns the geometry of inputGeometry minus the subtractor geometry.

GeometryEngine.Disjoint(Geometry, Geometry) Method

Indicates if one geometry is disjoint (doesn’t intersect in any way) with another geometry.

public System.Threading.Tasks.Task<bool> Disjoint(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

The base geometry that is tested for the “disjoint” relationship to the other geometry.

geometry2 Geometry

The comparison geometry that is tested for the “disjoint” relationship to the other geometry.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if geometry1 and geometry2 are disjoint (don’t intersect in any way).

GeometryEngine.Distance(Geometry, Geometry, Nullable) Method

Calculates the shortest planar distance between two geometries. Distance is reported in the linear units specified
by distanceUnit or, if distanceUnit is null, the units of the spatialReference of input geometry.

public System.Threading.Tasks.Task<double> Distance(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> distanceUnit=null);

Parameters

geometry1 Geometry

First input geometry.

geometry2 Geometry

Second input geometry.

distanceUnit System.Nullable<LinearUnit>

Measurement unit of the return value. Defaults to the units of the input geometries.

Returns

System.Threading.Tasks.Task<System.Double>
Distance between the two input geometries.

GeometryEngine.ExtendedSpatialReferenceInfo(SpatialReference) Method

Returns an object containing additional information about the input spatial reference.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Objects.SpatialReferenceInfo> ExtendedSpatialReferenceInfo(dymaptic.GeoBlazor.Core.Components.Geometries.SpatialReference spatialReference);

Parameters

spatialReference SpatialReference

The input spatial reference.

Returns

System.Threading.Tasks.Task<SpatialReferenceInfo>
Resolves to a SpatialReferenceInfo object.

GeometryEngine.FlipHorizontal(Geometry, Point) Method

Flips a geometry on the horizontal axis. Can optionally be flipped around a point.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> FlipHorizontal(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Point? flipOrigin=null);

Parameters

geometry Geometry

The input geometry to be flipped.

flipOrigin Point

Point to flip the geometry around. Defaults to the centroid of the geometry.

Returns

System.Threading.Tasks.Task<Geometry>
The flipped geometry.

GeometryEngine.FlipVertical(Geometry, Point) Method

Flips a geometry on the vertical axis. Can optionally be flipped around a point.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> FlipVertical(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Point? flipOrigin=null);

Parameters

geometry Geometry

The input geometry to be flipped.

flipOrigin Point

Point to flip the geometry around. Defaults to the centroid of the geometry.

Returns

System.Threading.Tasks.Task<Geometry>
The flipped geometry.

GeometryEngine.Generalize(Geometry, double, Nullable, Nullable) Method

Performs the generalize operation on the geometries in the cursor. Point and Multipoint geometries are left
unchanged. Envelope is converted to a Polygon and then generalized.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Generalize(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double maxDeviation, System.Nullable<bool> removeDegenerateParts=null, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> maxDeviationUnit=null);

Parameters

geometry Geometry

The input geometry to be generalized.

maxDeviation System.Double

The maximum allowed deviation from the generalized geometry to the original geometry.

removeDegenerateParts System.Nullable<System.Boolean>

When true the degenerate parts of the geometry will be removed from the output (may be undesired for drawing).

maxDeviationUnit System.Nullable<LinearUnit>

Measurement unit for maxDeviation. Defaults to the units of the input geometry.

Returns

System.Threading.Tasks.Task<Geometry>
The generalized geometry.

GeometryEngine.GeodesicArea(Polygon, Nullable) Method

Calculates the area of the input geometry. As opposed to planarArea(), geodesicArea takes into account the
curvature of the earth when performing this calculation. Therefore, when using input geometries with a spatial
reference of either WGS84 (wkid: 4326) or Web Mercator, it is best practice to calculate areas using
geodesicArea(). If the input geometries have a projected coordinate system other than Web Mercator, use
planarArea() instead.

public System.Threading.Tasks.Task<double> GeodesicArea(dymaptic.GeoBlazor.Core.Components.Geometries.Polygon geometry, System.Nullable<dymaptic.GeoBlazor.Core.Objects.ArealUnit> unit=null);

Parameters

geometry Polygon

The input polygon

unit System.Nullable<ArealUnit>

Measurement unit of the return value. Defaults to the units of the input geometries.

Returns

System.Threading.Tasks.Task<System.Double>
Area of the input geometry.

Remarks

This method only works with WGS84 (wkid: 4326) and Web Mercator spatial references.

GeometryEngine.GeodesicBuffer(Geometry, double, Nullable) Method

Creates geodesic buffer polygons at a specified distance around the input geometries. When calculating distances,
this method takes the curvature of the earth into account, which provides highly accurate results when dealing with
very large geometries and/or geometries that spatially vary on a global scale where one projected coordinate system
could not accurately plot coordinates and measure distances for all the geometries.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Polygon> GeodesicBuffer(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double distance, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> unit=null);

Parameters

geometry Geometry

The buffer input geometru

distance System.Double

The specified distance for buffering.

unit System.Nullable<LinearUnit>

Measurement unit of the distance. Defaults to the units of the input geometry.

Returns

System.Threading.Tasks.Task<Polygon>
The resulting buffers

Remarks

This method only works with WGS84 (wkid: 4326) and Web Mercator spatial references. In general, if your input
geometries are assigned one of those two spatial references, you should always use geodesicBuffer() to obtain the
most accurate results for those geometries. If needing to buffer points assigned a projected coordinate system
other than Web Mercator, use buffer() instead. If the input geometries have a geographic coordinate system other
than WGS84 (wkid: 4326), use geometryService.buffer().

GeometryEngine.GeodesicBuffer(IEnumerable, IEnumerable, Nullable, Nullable) Method

Creates geodesic buffer polygons at a specified distance around the input geometries. When calculating distances,
this method takes the curvature of the earth into account, which provides highly accurate results when dealing with
very large geometries and/or geometries that spatially vary on a global scale where one projected coordinate system
could not accurately plot coordinates and measure distances for all the geometries.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Polygon[]> GeodesicBuffer(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries, System.Collections.Generic.IEnumerable<double> distances, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> unit=null, System.Nullable<bool> unionResults=null);

Parameters

geometries System.Collections.Generic.IEnumerable<Geometry>

The buffer input geometries

distances System.Collections.Generic.IEnumerable<System.Double>

The specified distance(s) for buffering. The length of the geometry array does not have to equal the length of the
distance array. For example, if you pass an array of four geometries: [g1, g2, g3, g4] and an array with one
distance: [d1], all four geometries will be buffered by the single distance value. If instead you use an array of
three distances: [d1, d2, d3], g1 will be buffered by d1, g2 by d2, and g3 and g4 will both be buffered by d3. The
value of the geometry array will be matched one to one with those in the distance array until the final value of
the distance array is reached, in which case that value will be applied to the remaining geometries.

unit System.Nullable<LinearUnit>

Measurement unit of the distance(s). Defaults to the units of the input geometries.

unionResults System.Nullable<System.Boolean>

Determines whether the output geometries should be unioned into a single polygon.

Returns

System.Threading.Tasks.Task<Polygon[]>
The resulting buffers

Remarks

This method only works with WGS84 (wkid: 4326) and Web Mercator spatial references. In general, if your input
geometries are assigned one of those two spatial references, you should always use geodesicBuffer() to obtain the
most accurate results for those geometries. If needing to buffer points assigned a projected coordinate system
other than Web Mercator, use buffer() instead. If the input geometries have a geographic coordinate system other
than WGS84 (wkid: 4326), use geometryService.buffer().

GeometryEngine.GeodesicDensify(Geometry, double, Nullable) Method

Returns a geodesically densified version of the input geometry. Use this function to draw the line(s) of the
geometry along great circles.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> GeodesicDensify(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double maxSegmentLength, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> maxSegmentLenghtUnit=null);

Parameters

geometry Geometry

A polyline or polygon to densify.

maxSegmentLength System.Double

The maximum segment length allowed (in meters if a maxSegmentLengthUnit is not provided). This must be a positive
value.

maxSegmentLenghtUnit System.Nullable<LinearUnit>

Measurement unit for maxSegmentLength. If not provided, the unit will default to meters.

Returns

System.Threading.Tasks.Task<Geometry>
Returns the densified geometry.

GeometryEngine.GeodesicLength(Geometry, Nullable) Method

Calculates the length of the input geometry. As opposed to planarLength(), geodesicLength() takes into account the
curvature of the earth when performing this calculation. Therefore, when using input geometries with a spatial
reference of either WGS84 (wkid: 4326) or Web Mercator, it is best practice to calculate lengths using
geodesicLength(). If the input geometries have a projected coordinate system other than Web Mercator, use
planarLength() instead.

public System.Threading.Tasks.Task<double> GeodesicLength(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> unit=null);

Parameters

geometry Geometry

The input geometry.

unit System.Nullable<LinearUnit>

Measurement unit of the return value. Defaults to the units of the input geometry.

Returns

System.Threading.Tasks.Task<System.Double>
Length of the input geometry.

Remarks

This method only works with WGS84 (wkid: 4326) and Web Mercator spatial references.

GeometryEngine.Intersect(Geometry, Geometry) Method

Creates new geometries from the intersections between two geometries. If the input geometries have different
dimensions (i.e. point = 0; polyline = 1; polygon = 2), then the result’s dimension will be equal to the lowest
dimension of the inputs.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Intersect(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

The input geometry.

geometry2 Geometry

The geometry to intersect with geometry1.

Returns

System.Threading.Tasks.Task<Geometry>
The intersections of the geometries.

GeometryEngine.Intersect(IEnumerable, Geometry) Method

Creates new geometries from the intersections between two geometries. If the input geometries have different
dimensions (i.e. point = 0; polyline = 1; polygon = 2), then the result’s dimension will be equal to the lowest
dimension of the inputs. The table below describes the expected output for various combinations of geometry types.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[]> Intersect(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometries1 System.Collections.Generic.IEnumerable<Geometry>

The input array of geometries.

geometry2 Geometry

The geometry to intersect with geometries1.

Returns

System.Threading.Tasks.Task<Geometry[]>
The intersections of the geometries.

GeometryEngine.Intersects(Geometry, Geometry) Method

Indicates if one geometry intersects another geometry.

public System.Threading.Tasks.Task<bool> Intersects(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

The geometry that is tested for the intersects relationship to the other geometry.

geometry2 Geometry

The geometry being intersected.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if the input geometries intersect each other.

GeometryEngine.IsSimple(Geometry) Method

Indicates if the given geometry is topologically simple. In a simplified geometry, no polygon rings or polyline
paths will overlap, and no self-intersection will occur.

public System.Threading.Tasks.Task<bool> IsSimple(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry);

Parameters

geometry Geometry

The input geometry.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if the geometry is topologically simple.

GeometryEngine.NearestCoordinate(Geometry, Point) Method

Finds the coordinate of the geometry that is closest to the specified point.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Objects.NearestPointResult> NearestCoordinate(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Point inputPoint);

Parameters

geometry Geometry

The geometry to consider.

inputPoint Point

The point used to search the nearest coordinate in the geometry.

Returns

System.Threading.Tasks.Task<NearestPointResult>
Returns an object containing the nearest coordinate.

GeometryEngine.NearestVertex(Geometry, Point) Method

Finds the vertex on the geometry nearest to the specified point.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Objects.NearestPointResult> NearestVertex(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Point inputPoint);

Parameters

geometry Geometry

The geometry to consider.

inputPoint Point

The point used to search the nearest vertex in the geometry.

Returns

System.Threading.Tasks.Task<NearestPointResult>
Returns an object containing the nearest vertex.

GeometryEngine.NearestVertices(Geometry, Point, double, int) Method

Finds all vertices in the given distance from the specified point, sorted from the closest to the furthest and
returns them as an array of Objects.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Objects.NearestPointResult[]> NearestVertices(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, dymaptic.GeoBlazor.Core.Components.Geometries.Point inputPoint, double searchRadius, int maxVertexCountToReturn);

Parameters

geometry Geometry

The geometry to consider.

inputPoint Point

The point from which to measure.

searchRadius System.Double

The distance to search from the inputPoint in the units of the view’s spatial reference.

maxVertexCountToReturn System.Int32

The maximum number of vertices to return.

Returns

System.Threading.Tasks.Task<NearestPointResult[]>
An array of objects containing the nearest vertices within the given searchRadius.

GeometryEngine.Offset(Geometry, double, Nullable, Nullable, Nullable, Nullable) Method

The offset operation creates a geometry that is a constant planar distance from an input polyline or polygon. It is
similar to buffering, but produces a one-sided result.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Offset(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double offsetDistance, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> offsetUnit=null, System.Nullable<dymaptic.GeoBlazor.Core.Model.JoinType> joinType=null, System.Nullable<double> bevelRatio=null, System.Nullable<double> flattenError=null);

Parameters

geometry Geometry

The geometry to offset.

offsetDistance System.Double

The planar distance to offset from the input geometry. If offsetDistance > 0, then the offset geometry is
constructed to the right of the oriented input geometry, if offsetDistance = 0, then there is no change in the
geometries, otherwise it is constructed to the left. For a simple polygon, the orientation of outer rings is
clockwise and for inner rings it is counter clockwise. So the “right side” of a simple polygon is always its
inside.

offsetUnit System.Nullable<LinearUnit>

Measurement unit of the offset distance. Defaults to the units of the input geometries.

joinType System.Nullable<JoinType>

The JoinType

bevelRatio System.Nullable<System.Double>

Applicable when joinType = ‘miter’; bevelRatio is multiplied by the offset distance and the result determines how
far a mitered offset intersection can be located before it is beveled.

flattenError System.Nullable<System.Double>

Applicable when joinType = ‘round’; flattenError determines the maximum distance of the resulting segments compared
to the true circular arc. The algorithm never produces more than around 180 vertices for each round join.

Returns

System.Threading.Tasks.Task<Geometry>
The offset geometry.

GeometryEngine.Offset(IEnumerable, double, Nullable, Nullable, Nullable, Nullable) Method

The offset operation creates a geometry that is a constant planar distance from an input polyline or polygon. It is
similar to buffering, but produces a one-sided result.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[]> Offset(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries, double offsetDistance, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> offsetUnit=null, System.Nullable<dymaptic.GeoBlazor.Core.Model.JoinType> joinType=null, System.Nullable<double> bevelRatio=null, System.Nullable<double> flattenError=null);

Parameters

geometries System.Collections.Generic.IEnumerable<Geometry>

The geometries to offset.

offsetDistance System.Double

The planar distance to offset from the input geometry. If offsetDistance > 0, then the offset geometry is
constructed to the right of the oriented input geometry, if offsetDistance = 0, then there is no change in the
geometries, otherwise it is constructed to the left. For a simple polygon, the orientation of outer rings is
clockwise and for inner rings it is counter clockwise. So the “right side” of a simple polygon is always its
inside.

offsetUnit System.Nullable<LinearUnit>

Measurement unit of the offset distance. Defaults to the units of the input geometries.

joinType System.Nullable<JoinType>

The JoinType

bevelRatio System.Nullable<System.Double>

Applicable when joinType = ‘miter’; bevelRatio is multiplied by the offset distance and the result determines how
far a mitered offset intersection can be located before it is beveled.

flattenError System.Nullable<System.Double>

Applicable when joinType = ‘round’; flattenError determines the maximum distance of the resulting segments compared
to the true circular arc. The algorithm never produces more than around 180 vertices for each round join.

Returns

System.Threading.Tasks.Task<Geometry[]>
The offset geometries.

GeometryEngine.Overlaps(Geometry, Geometry) Method

Indicates if one geometry overlaps another geometry.

public System.Threading.Tasks.Task<bool> Overlaps(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

The base geometry that is tested for the “overlaps” relationship with the other geometry.

geometry2 Geometry

The comparison geometry that is tested for the “overlaps” relationship with the other geometry.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if the two geometries overlap.

GeometryEngine.PlanarArea(Polygon, Nullable) Method

Calculates the area of the input geometry. As opposed to geodesicArea(), planarArea() performs this calculation
using projected coordinates and does not take into account the earth’s curvature. When using input geometries with
a spatial reference of either WGS84 (wkid: 4326) or Web Mercator, it is best practice to calculate areas using
geodesicArea(). If the input geometries have a projected coordinate system other than Web Mercator, use
planarArea() instead.

public System.Threading.Tasks.Task<double> PlanarArea(dymaptic.GeoBlazor.Core.Components.Geometries.Polygon geometry, System.Nullable<dymaptic.GeoBlazor.Core.Objects.ArealUnit> unit=null);

Parameters

geometry Polygon

The input polygon.

unit System.Nullable<ArealUnit>

Measurement unit of the return value. Defaults to the units of the input geometries.

Returns

System.Threading.Tasks.Task<System.Double>
The area of the input geometry.

GeometryEngine.PlanarLength(Geometry, Nullable) Method

Calculates the length of the input geometry. As opposed to geodesicLength(), planarLength() uses projected
coordinates and does not take into account the curvature of the earth when performing this calculation. When using
input geometries with a spatial reference of either WGS84 (wkid: 4326) or Web Mercator, it is best practice to
calculate lengths using geodesicLength(). If the input geometries have a projected coordinate system other than Web
Mercator, use planarLength() instead.

public System.Threading.Tasks.Task<double> PlanarLength(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, System.Nullable<dymaptic.GeoBlazor.Core.Objects.LinearUnit> unit=null);

Parameters

geometry Geometry

The input geometry.

unit System.Nullable<LinearUnit>

Measurement unit of the return value. Defaults to the units of the input geometries.

Returns

System.Threading.Tasks.Task<System.Double>
The length of the input geometry.

GeometryEngine.Relate(Geometry, Geometry, string) Method

Indicates if the given DE-9IM relation is true for the two geometries.

public System.Threading.Tasks.Task<bool> Relate(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2, string relation);

Parameters

geometry1 Geometry

The first geometry for the relation.

geometry2 Geometry

The second geometry for the relation.

relation System.String

The Dimensionally Extended 9 Intersection Model (DE-9IM) matrix relation (encoded as a string) to test against the
relationship of the two geometries. This string contains the test result of each intersection represented in the
DE-9IM matrix. Each result is one character of the string and may be represented as either a number (maximum
dimension returned: 0,1,2), a Boolean value (T or F), or a mask character (for ignoring results: ‘’). For example,
each of the following DE-9IM string codes are valid for testing whether a polygon geometry completely contains a
line geometry: TTTFFTFFT (Boolean), ‘T
****FF’ (ignore irrelevant intersections), or ‘102FFFF’ (dimension
form). Each returns the same result. See
this article and

this
  
ArcGIS help page

</a>
for more information about the DE-9IM model and how string codes are constructed.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if the relation of the input geometries is accurate.

GeometryEngine.Rotate(Geometry, double, Point) Method

Rotates a geometry counterclockwise by the specified number of degrees. Rotation is around the centroid, or a given
rotation point.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Rotate(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry, double angle, dymaptic.GeoBlazor.Core.Components.Geometries.Point rotationOrigin);

Parameters

geometry Geometry

The geometry to rotate.

angle System.Double

The rotation angle in degrees.

rotationOrigin Point

Point to rotate the geometry around. Defaults to the centroid of the geometry.

Returns

System.Threading.Tasks.Task<Geometry>
The rotated geometry.

GeometryEngine.Simplify(Geometry) Method

Performs the simplify operation on the geometry, which alters the given geometries to make their definitions
topologically legal with respect to their geometry type. At the end of a simplify operation, no polygon rings or
polyline paths will overlap, and no self-intersection will occur.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Simplify(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry);

Parameters

geometry Geometry

The geometry to be simplified.

Returns

System.Threading.Tasks.Task<Geometry>
The simplified geometry.

GeometryEngine.SymmetricDifference(Geometry, Geometry) Method

Creates the symmetric difference of two geometries. The symmetric difference includes the parts that are in either
of the sets, but not in both.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> SymmetricDifference(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry leftGeometry, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry rightGeometry);

Parameters

leftGeometry Geometry

One of the Geometry instances in the XOR operation.

rightGeometry Geometry

One of the Geometry instances in the XOR operation.

Returns

System.Threading.Tasks.Task<Geometry>
The symmetric differences of the two geometries.

GeometryEngine.SymmetricDifference(IEnumerable, Geometry) Method

Creates the symmetric difference of two geometries. The symmetric difference includes the parts that are in either
of the sets, but not in both.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[]> SymmetricDifference(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> leftGeometries, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry rightGeometry);

Parameters

leftGeometries System.Collections.Generic.IEnumerable<Geometry>

One of the Geometry instances in the XOR operation.

rightGeometry Geometry

One of the Geometry instances in the XOR operation.

Returns

System.Threading.Tasks.Task<Geometry[]>
The symmetric differences of the two geometries.

GeometryEngine.Touches(Geometry, Geometry) Method

Indicates if one geometry touches another geometry.

public System.Threading.Tasks.Task<bool> Touches(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry1, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry geometry2);

Parameters

geometry1 Geometry

The geometry to test the “touches” relationship with the other geometry.

geometry2 Geometry

The geometry to be touched.

Returns

System.Threading.Tasks.Task<System.Boolean>
When true, geometry1 touches geometry2.

GeometryEngine.Union(Geometry[]) Method

All inputs must be of the same type of geometries and share one spatial reference.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Union(params dymaptic.GeoBlazor.Core.Components.Geometries.Geometry[] geometries);

Parameters

geometries Geometry[]

An array of Geometries to union.

Returns

System.Threading.Tasks.Task<Geometry>
The union of the geometries

GeometryEngine.Union(IEnumerable) Method

All inputs must be of the same type of geometries and share one spatial reference.

public System.Threading.Tasks.Task<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> Union(System.Collections.Generic.IEnumerable<dymaptic.GeoBlazor.Core.Components.Geometries.Geometry> geometries);

Parameters

geometries System.Collections.Generic.IEnumerable<Geometry>

An array of Geometries to union.

Returns

System.Threading.Tasks.Task<Geometry>
The union of the geometries

GeometryEngine.Within(Geometry, Geometry) Method

Indicates if one geometry is within another geometry.

public System.Threading.Tasks.Task<bool> Within(dymaptic.GeoBlazor.Core.Components.Geometries.Geometry innerGeometry, dymaptic.GeoBlazor.Core.Components.Geometries.Geometry outerGeometry);

Parameters

innerGeometry Geometry

The base geometry that is tested for the “within” relationship to the other geometry.

outerGeometry Geometry

The comparison geometry that is tested for the “contains” relationship to the other geometry.

Returns

System.Threading.Tasks.Task<System.Boolean>
Returns true if innerGeometry is within outerGeometry.